Table of Contents

This post examines whether low intensity whole body vibration therapy is appropriate for the treatment of osteoporosis. It also presents the health risks associated with high intensity whole vibration platforms. If you are considering a whole body vibration platform, I encourage you to read this article in its entirety.

Low Intensity Vibration Plate for Osteoporosis

The article is based on three hours of interview I had in late 2020 with Dr. Clinton Rubin, a leading researcher and world expert in the field of whole body vibration therapy.

Later in this post, in Chapter 5, we have a significant content update. We hosted a webinar in September of 2022 with experts on low intensity vibration plates for osteoporosis and allowed the audience to ask their questions.

Dr. Rubin is a SUNY Distinguished Professor of Biomedical Engineering and Director of the Center for Biotechnology at Stony Brook University in Stony Brook, New York. Dr. Clinton is the most cited researcher in the area of vibration therapy.

Late 2020, I also approached Juvent, a manufacturer of whole body vibration platforms, to discuss this same topic. I was unable to get my questions answered to my satisfaction.

By the time you finish reading the whole article you will understand:

  1. Why you should immediately stop using a high intensity whole body vibration platform.
  2. The benefits of low intensity vibration therapy and how it complements exercise.
  3. How bone is formed and maintained throughout life.
  4. The importance of frequent exercise on bone health.

Marodyne Price Discount for Readers

If you have an interest in the low intensity vibration plate discussed in this post, you can contact Marodyne and they will get back to you to address any questions you have.

If you decide to purchase the device, they will give you a discount on the purchase price.

Marodyne LiV Product Review

If you are interested in the Marodyne LiV, you can read my product review.

Vibration Therapy Recommendations

I constantly search for the best therapy options to treat my clients’ bone health. I only recommend something to my clients when I see peer-reviewed scientific research (published in established journals) indicating the efficacy of the modality.

Exercise, specifically exercise that is targeted and safe, is proven to improve the health of your bones (as well as improve you overall physical and mental health). People should exercise to their maximum capacity in order to avoid the onset of frailty.

I believe, after researching the area of whole body vibration, that low intensity vibration (LIV) therapy is an effective and appropriate modality for many people with osteoporosis. Research conducted by Dr. Clinton Rubin, as well as the certification and approval by the European Union as a non-drug preventative tool for osteoporosis, indicates its efficacy.

This post provides an in-depth discussion of whether low intensity vibration is safe for people with medical conditions.

When I Recommend Low Intensity Vibration Therapy

The following are the circumstance when I recommend low intensity vibration therapy.

  • LiV can act as a surrogate to exercise when you exercise to your maximum capacity but, due to other factors (for example, time or physical constraints), you are unable to gain or maintain your bone density.
  • You manage to exercise once a day but you have trouble fitting in a second exercise activity (such as a walk or workout). In that case, time on the LiV can make up for the missing second exercise session.
  • If you are fragile — for example, you get recurrent metatarsal fractures (the long bones in your feet), recurrent sprains or strains — then LiV can be used either alone or in conjunction with exercise.
  • Bad weather, rain, snow, or heat regularly stop you from getting out for some form of exercise every day.
  • Past injuries limit your loading and lifting capacity, thereby restricting your ability to do exercise appropriate for your bone health.
  • Co-morbidities such as chronic heart or lung disease, arthritis, chronic pain limit your access to regular exercise.

In addition, LiV can be used to pre-stimulate your cells and optimize the benefit of your exercise session. In this case you would stand on the platform 2 to 5 hours before you plan to exercise. You can also stand on the platform 2 to 5 hours after exercise, as well.

Limitations of Low Intensity Vibration Therapy

LiV is not a silver bullet or panacea, nor does it relieve you of your responsibility to follow the proper exercise program and eat right. There are no guarantees in medicine, whether the proposed solution is a drug or a device.

Your goal should be to make sure your skeleton outlives you. It would be wonderful if you can keep your skeleton in the form it was from its first day of use. You succeed if the quality and quantity of your bone stay the same, and thus reduce your risk of fracture. Gaining bone is a bonus, but avoiding resorption is essential.

Low intensity vibration therapy does not replace exercise. It will not make your muscles stronger or more flexible, nor does it improve your cardiovascular system (heart and lungs).

Finally, LiV therapy does have a positive impact on your balance, however, you can achieve many of your balance goals with a well designed (and less expensive) balance exercise routine.

Chapter 1: High Intensity Whole Body Vibration Versus Low Intensity Vibration

The series of interviews I conducted with Dr. Rubin provide the reader with an up-to-date, comprehensive and accessible discussion on the efficacy of whole body vibration, and in particular, low intensity vibration (LiV), for the treatment and prevention of osteoporosis.

With that in mind, let us move onto my three interviews with Dr. Rubin which I conducted in December of 2020. The first video, below, identifies the difference between high intensity whole body vibration platforms and low intensity vibration platforms, with a special emphasis on the safety risks of one platform over another.

Whole Body Vibration Platforms and Low Intensity Vibration Platforms

In the first interview, below, we discuss the difference between the whole body vibration platforms (you can find at gyms and clinics or purchase on Amazon) and low intensity vibration platforms. LiV has been the focus of Dr. Rubin’s work. The section that follows after the embedded interview presents much of the content of the video.

A good place to gain an understanding of the difference between high intensity and low intensity vibration is with a benchmark. Let’s examine that next.

Low and High Intensity Vibration Measured in G

The best benchmark is earth’s gravitational field, referred to as G. One G is what keeps all of us planted firmly on earth so that we do not float away.

Low intensity vibration, in the context of this discussion, are mechanical signals that are below the acceleration of one G.

If you are accelerating up and down, let’s say in an elevator or on a vibrating plate, it means you don’t actually leave the surface because the acceleration isn’t sufficient to lift you off the ground.

Acceleration greater than one G is high magnitude vibration.

One of the great risks of high magnitude vibration (found in whole body vibration platforms with signals over one G) is that they can cause harm, and in some cases quite significant harm to the user. Let’s discuss that next.

Health Risks of High Intensity Whole Body Vibration Platforms

You can find high intensity vibration platforms, like the Power Plate, in some gyms, clinics, and other facilities.

If you are told to bend your knees when you stand on the device, that is a tell-tale sign that the platform uses high magnitude vibration.

whole body vibration melioguide physical therapy

Danger #1: Don’t Stand Straight on a High Intensity Whole Body Vibration Platform!

The reason you have to bend your knees is because the transmission of the mechanical signal will propagate through your body and cause harm. The jarring vibrations can move right through your axial (spine) and appendicular (arms and legs) skeleton into your head, and could possibly cause damage to your brain.

A study conducted by a team of Finnish researchers and published in the Journal of Bone and Mineral Research (1) in 2009 illustrates the safety issues related to high intensity whole body vibration platforms.

Four healthy men between the ages of 24 and 47 volunteered to stand on a whole body vibration platform while the research team measured the results. According to the study: “the frequency and amplitude (the vibration amplitude denotes the peak displacement of the platform [in mm] from its middle position) of the whole body vibration platform were adjustable from 5 to 3000 Hz and from 0 to 19 mm.”

The subjects were told to “stand with normal erect position (knees slightly bent) on the platform. The subjects wore no shoes and used similar cotton socks to avoid external between‐subject variance in damping.”

During the trials, the amplitudes ranged between 0.05 mm to 3 mm, frequency ranged from 15 to as much as 90 hertz, and the resulting peak acceleration (measured in G) ranged from 0.04 to as high as 19.30 G. Duration on the platform was limited to between 30 to 60 seconds.

The research team stated that: “clinical vibration interventions can be divided either into sub‐G studies (platform peak acceleration <1 G, where G denotes Earth’s gravitational constant, or 9.81 m/s2 at sea level) or supra‐G studies (platform acceleration >1 G, reaching 10 G or more).”

For consistency purposes, the sub-G is the same as our low intensity vibration definition and the supra-G is the same as our definition of high intensity vibration.

Results

Dr. Kiiski reported the following observations:

  1. “When the vibration platform reaches supra‐G (that is, high intensity vibration) levels, the body gets out of phase and is impacted tens of times per second, depending on frequency. It is noted that in a quasi‐static compressive testing, the failure load of an osteoporotic lumbar vertebral body can be as low as 1300 N34—only two to three times body weight (i.e., 2–3 G) of a frail individual.”
  2. “On the other hand, the vibration-induced impacts, although high in magnitude, are very short in duration (~10 ms), and may as such, not transfer enough energy to damage the vertebrae in their natural biomechanical environment. However, the mere possibility that the supra-G vibration induced impacts could endanger fragile bones warrants concern. In particular, given the large number of repetitive high loads received during a typical vibration session, fatigue damage to the bone may not be totally excluded.”
  3. “Besides possibly jeopardizing fragile bones, influence of supra‐G vibration on aged cartilage tissue and other organs is not known.”
  4. “Regarding the safety further, the transmissibility of vibration to the upper body is known to increase with fully straight knees and whereas enhancing the stimulus for sub‐G vibration (that is, low intensity vibration) devices, this posture may increase the risk for supra‐G devices. Obviously, high transmission of vibration to the head should be avoided.”

The team concluded: “Although the attenuation of vertical vibration at higher frequencies is fortunate from the aspect of safety, amplitudes >0.5 mm may result in greater peak accelerations than imposed at the platform and thus pose a potential hazard for the fragile musculoskeletal system.”

The key take away is if you have bones (or other body parts) with any degree of fragility, it is in your best interest to avoid using a high intensity whole body vibration platform running at supra-G (or high intensity vibration) levels of intensity. And if you are forced to be on one, limit the duration to 16 seconds or less per day.

Danger #2: Retinal Detachment

There are reports of people experiencing detached corneas and retinas while standing on high magnitude whole body vibration devices. In least harmful cases, people complain of low back pain and other discomforts.

A case report published in 2020 by Dr. John Maggiano in BMC Ophthalmology (2) documents the case of a 59 year old male who sustained “temporal retinal tear, mild vitreous hemorrhage, and an inferior pre-retinal hemorrhage in the left eye” after using a high intensity whole body vibration platform.

The study points out that there have been other cases of “vitreous hemorrhage following whole-body vibration exercise. Both of these papers suggest a high probability of correlation between whole-body vibration training and subsequent vitreous hemorrhage.”

[Image courtesy of Wikimedia Commons. Artwork by Holly Fischer, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>, via Wikimedia Commons]

Dr. Maggiano and his colleagues conclude by stating: “with the rise in popularity of whole body vibration training exercise, it is important for the medical and athletic community to be aware of possible associated ocular complications. We believe that high-force vibration training may cause retinal tears in susceptible persons.”

In another case report (3) entitled, Intraocular lens dislocation after whole-body vibration, published in the Journal of Cataract Refract Surgery in 2010, Dr. Vela and colleagues report on two individuals who experienced intraocular lens (IOL) dislocation as a result of using high intensity whole body vibration platforms.

The authors conclude that “patients with an underlying predisposition to IOL dislocation may be at increased risk when using [whole body] vibration machines. Cataract surgeons should be aware of this potential complication.”

While the number of people who have experienced damage to the eye as a result of standing on a high intensity whole body vibration platform is relatively small, you should still exercise caution before either using or purchasing one of these devices. The signal can propagate through your body and shake things that are loose and potentially cause irreversible damage to your health.

Danger #3: Damage to the Cochlea

A study published in 2013 demonstrated that there could be a linkage between high intensity whole body vibration and hearing loss. The study was conducted on rabbits and not humans (for obvious reasons). The researchers concluded that “whole-body vibration could cause cochlear damages in male rabbits, though vibration-induced auditory functional effects might be resulted as subsequent outcome of prolonged high level vibration exposures.”

Since publishing this post, a number of readers have contacted me about their health issues since using high intensity whole vibration plates. One reader, in particular, experienced tinnitus after using the LifePro Turbo Vibration Plate. While the link between her tinnitus and the usage of the plate is inconclusive, I encourage caution (actually, avoidance) when it comes to these devices.

Here is her email to me. I have left out her name to protect her identity.

First let me thank you for all the helpful information in your emails. I am an active 69 year old with osteoporosis, and your work is so very useful!

I am writing in regard to vibration plates.

I purchased a LifePro Turbo Vibration Plate in February of this year. (I realize it is not the same unit you and Dr. Rubin are using.) I purchased it [on Amazon] because I could not go to the gym during Covid, and thought it might make home workouts more interesting and useful. I also have mild neuropathy in my feet, and thought the plate might help with that also.

However, after using the plate at the lower levels for a few weeks, I developed tinnitus. I have been to an ENT (ear, nose and throat doctor) and been evaluated by an audiologist. They confirmed I have lost hearing at the very highest level of sound only, and my hearing is normal. I do not need hearing aids, nor would they help my tinnitus. I was told my tinnitus was caused by loud noise (misuse of ear buds) or my age.

I am now leery of using the plate. I have always easily been made dizzy. At first I thought dizziness would be a problem with the plate, but I got used to it; and was hoping continued use might help me with that issue. The audiologist said being easily made dizzy is controlled by an organ very close to the cochlea. Feeling dizzy easily is a sign there is a weakness in my auditory system. This was said by the audiologist who recommended I check with a physical therapist about the wisdom of continuing with the plate.

I know I need to protect my ears now more than ever. I must be careful of loud sounds etc. To be honest, I enjoyed using the plate and miss it.

However, the tinnitus is very distressing. I definitely do not want to make it any worse. I know the plate probably did not cause my tinnitus, but worry it may have exacerbated it.

Recommendation

My recommendation is that there are few benefits and far too many safety and health risks when using a high intensity whole body vibration platform.

Avoid them.

International Standards Organization (ISO) 2631 Advisory on Work Place High Magnitude Vibration

High magnitude vibration is a pathogen. The International Standards Organization (ISO) advisory for human exposure to vibration, called ISO 2631, identifies the health risks associated with high magnitude vibration in the workplace.

The ISO publishes advisories for people who work on the floor of a manufacturing site, truck drivers or helicopter pilots.

In other words, if you had one of these high intensity whole body vibration platforms in your workplace, you would be prohibited from using it because of the ISO safety guidelines.

Manufacturers of whole body vibration platforms that exhibit high magnitude vibration and sell to consumers are not subject to these advisories because the devices do not find their way into work environments. In a different post I discuss whole body vibration therapy contraindications, however, the main problem with these platforms is the high intensity levels they use.

What is a Safe Level of Exposure to High Magnitude Vibration?

The amount of vibration exposure is determined by a combination of frequency (in cycles per second or hertz), intensity or magnitude (measured in G, as described above), and duration (amount of time on the device during a session).

The devices found in high-end gyms generate a G-force of around 8 G — at their low settings. As a reminder, that is eight times Earth’s gravitational force.

The G-force is around 15 G at the high settings for this class of device.

The ISO 2631 advisories (mentioned earlier) would say that these devices are safe for less than 16 seconds of exposure per day.

The consequences of exposing your body to these high magnitude signals (particularly if you’re osteoporotic or osteopenic — that is, you have low bone density at either your femoral neck or spine) is that you are increasing your susceptibility to fracture.

This is equivalent to standing on your desk and then jumping off 30 times a second.

When you have poor bone quality and you use high magnitude vibration devices for any length of time (beyond 16 seconds, that is), then you are putting your bone health at risk.

High and Low Intensity Vibration and Real World Applications

In his lab and during clinical trials, Dr. Rubin never goes above 1 G of force. In fact, all of his studies are usually around 0.7 G (or seven tenths of gravitational field) or lower.

In the clinic, the research team usually stays around 0.4 G (or less than half of our gravitational field).

For comparison purposes with real life applications, when you walk down the street, you strike your heel against the sidewalk. The gravitational impact of that is around 1.2 G.

When you run, you apply about 2 G of force.

When you use a high magnitude vibration device (at it’s low settings), you are subject to a force of 8 G. That is concerning.

A similar comparison between running and low intensity vibration is more comforting. Again, when you run, you experience 2 G of force to your heel strike. While standing on a low intensity vibration device, it generates a relatively safe 0.4 G of force. That is more agreeable!

Safe Duration Limits for Low Intensity Vibration

If one applies the same standards set by ISO 2631 to low intensity vibration devices (using 0.4 G), it’s considered safe to use for between four to eight hours of exposure per day.

Conclusion and Recommendation

I recommend you avoid high intensity whole body vibration platforms. The health risks far outweigh any potential benefits.

A number of readers have asked me if they change the frequency setting on their high intensity vibration platform so that it is 30 hertz will it make the platform safe to use. Frequency is just one variable. Another is displacement. The most important is the intensity and the problem is that it is unlikely that changing the frequency to 30 hertz will bring the device you have into the safe zone.

In my opinion, high intensity whole body vibration platforms should, like cigarettes, come with a warning label. At a minimum, they should be subject to independent study verifying their health benefits and gauging health risks.

Chapter 2: How Low Intensity Vibration Plate Works and Improves Bone Density

In this chapter, I cover in detail how low intensity vibration works (right down to the stem cells in your bone marrow) and discuss how it can improve your bone health.

This discussion is based on the second video interview, below, I did with Dr. Rubin. The sections that follow the video discuss the video content.

How Low Intensity Vibration Improves Bone Health

Your muscular skeletal system is an adaptive system. If you lead a sedentary lifestyle or are chronically inactive, then you are not regularly loading your muscular skeletal system.

The result: your muscular skeletal system will begin to waste away — almost immediately.

In other words, you need to “use it or lose it” when it comes to your bones.

Research shows that if you are inactive for a 24 hour period, your system recruits cells that start to break down tissues instead of loading or building them up. People who do not challenge their system for an extended period, either through choice or forced inactivity (such as through bedrest) experience an accelerated decline in bone mass.

As an example, we achieve peak bone mass around the age of 35, and both men and women lose around 2-3% bone per decade after that — if they do not consciously do activity to mitigate the loss. Post menopausal women can lose between 2 to 3% (or as much as 5%) per year — an accelerated loss in bone (due to hormonal decline).

Astronauts, Athletes and Bone Health

Astronauts, on the other hand, shed as much as 2% of bone mass per month while in space, despite being well trained athletes in peak condition.

Why is this loss happening? What’s the difference between an astronaut and us?

The reason is that the astronauts, while in space, are not subject to G — Earth’s gravitational field that loads the bone.

The “use it or lose it” phenomenon acts in the opposite direction, as well.

Some of our greatest tennis players, Serena or Venus Williams, are good examples of “use it”. Professional tennis players have about 30-35% more bone in their playing arm compared to the arm that simply throws the ball up into the air.

The cells in and around your bone are able to perceive the mechanical challenges and respond to them. As you begin to exercise more and more, the cells pick up this signal, and build up not only bone density (the amount of bone you have) but also bone qualityBone quality is the way that the bone is put together.

Bone Anatomy

To understand bone anatomy, we need to discuss two key types of bone: cortical and trabecular bone.

First, there is cortical bone. An example of cortical bone is that dense, hard bone on your shin.

Second, towards the ends of the bone is trabecular bone (that is surrounded by a protective shell of cortical bone). The trabecular bone is more metabolically active and is the first to diminish as we age. We have more trabecular bone in our vertebrae and in the neck of the femur, which is why those areas tend to be where osteoporotic fractures occur.

Think of trabecular bone as struts of bone — equivalent to the scaffolding that holds a building up. As these struts begin to break down —with age, disuse, or disease — the trabeculae, which are all interconnected, begin to break away.

It is very difficult to reconnect the struts after they have broken down — even with the intervention of anabolic therapy (FORTEO or Evenity, for example). Although pharmaceutical intervention may build up bone density, there still may be a loss of bone quality.

Maintain Bone Density and Bone Quality

We want to figure out how to maintain our skeleton as long as possible. In other words, how can we keep the skeleton vibrant and healthy. It’s much, much easier to maintain a healthy skeleton than to lose it and try to build it back.

The Role of Cells in Maintaining Bone Density and Quality

Bone is a very live, viable tissue.

It’s actually the only tissue in the body that can heal without leaving a scar.

The bone is remarkably sophisticated. There are the bone forming cells, the osteoblasts, and there are the bone eating cells, the osteoclasts.

bone anatomy melioguide

There are also cells called osteocytes, which are cells inside the bone. Osteocytes are derived from osteoblasts, interconnected throughout the bone tissue, and are surrounded by new bone during bone formation.

There are cells on the surface of the bone called the periosteum and endosteum.

Bone Marrow: The Source of Bone Health

Dr. Rubin’s research indicates that the bone marrow, encased within the bone, plays a vital role in the health of your bones.

There are two types of stem cells in your bone marrow relevant to our discussion on bone health, hemapoietic stem cells (HSC) and mesenchymal stem cells (MSC).

Hemapoietic Stem Cells (HSC)

The hemapoietic stem cells (HSC) are critical to your immune system — your B and your T cells. The hemapoietic stem cells are the progenitors for your immune system. They are the agents that become the T and the B cells, which fight disease.

These multi potential progenitors can differentiate (or grow up) into different things. They can grow up into B cells, T cells, or they can go on to become macrophages, such as osteoclasts — the bone eating cells. During their lifetime, the hemapoietic stem cells within the bone marrow have to decide what they want to eventually become.

Mesenchymal Stem Cells (MSC)

The other interesting stem cells in the bone marrow are called the mesenchymal stem cells (MSC). These are cells that can grow up to become bone cells, cartilage cells, tendon cells, or ligament cells (as illustrated below).

However, mesenchymal stem cells can also become fat cells, called adipocytes.

The mesenchymal stem cells and hemapoietic stem cells reside in the marrow waiting for signals to indicate what type of cells they should become.

The signals that tell these stem cells what to do when they grow up include growth factors, cytokines (small proteins secreted by cells), and a variety of other indicators.

However, researchers have determined that these cells are also responsive to mechanical signals. As Dr. Rubin states: “mechanical signals can cause fate selection in your stem cells.”

mesenchymal stem cell melioguide

Mechanical Signals and Bone Formation

A key question is: what type of mechanical signals will tell the stem cells in your bone marrow to grow up and become bone, and muscle, and ligament, and tendon — and not become fat?

If you have a cell population that’s mechanically responsive, the question is what mechanical parameters are best suited to stimulate a response, or in the case of bone cells, to stimulate bone formation?

We know that exercise is good for our overall health, and in particular, our bone health. In past blog posts I have stated that brisk walking or running are stimuli for your bone.

When you walk briskly or run, how is force generated to your bone from your muscle? The answer lies in the way the muscles contract.

Muscle Contraction as a Mechanical Signal

Muscles contract at a clock speed, measured in hertz. If you lift up a weight, a coffee cup, or any other weight, your muscles in your arm (and supporting areas) contract at one cycle per second (depending how fast you lift the item).

Your muscles, as they contact and pull together, are an inefficient motor. As a muscle pulls and contracts, it is unstable and begins to shake.

Scientists have found that muscles shake at a clock rate of between 20 to 50 cycles per second. Whether you’re an average walker walking around the block, or you are Usain Bolt running the 100 metre dash at the Olympics, the force generated by your muscle is not only contracting at one cycle per second, it’s doing so by pulling together and shaking as it does so.

Low intensity vibration tries to provide a surrogate for that muscle shaking.

Low Intensity Vibration and Bone Cell Formation

Dr. Rubin’s research has found that not only are bone cells responsive to one cycle loads (also referred to as displacements), they’re also very, very sensitive to very small, high frequency, high cycles per second stimulation.

A bone cell could either wait for that one cycle per second load (from your walking or lifting) or it could respond to what it’s always seeing, which are your muscles contraction and vibration (at between 30 and 50 hertz).

That vibration is transmitted to the bone and the bone cells. The bone cells see a predominant signal during the day of 30 to 50 cycles per second of muscle shaking or vibrating.

Low intensity vibration stimulates the bone cells to think that they’re challenged by running a sprint in the Olympics.

The fact is that we are not running the 100 metre dash at the Olympics. However, by standing on this device, as low intensity as it is, as far as the bone cell is concerned, the effect is actually quite large.

The 30 cycles per second (30 hertz) clock rate at the displacement (0.4 G) on the low intensity vibration platform causes an intensity that’s actually anabolic — or is a stimulus to bone cells. The muscle vibration at 30 cycles per second on the low intensity vibration platform is a surrogate for high intensity exercise.

The combination of the vibration (at that clock rate) and the displacement (at 0.4 G) is a signal to the cells in the bone marrow to grow into bone formation cells (osteoblasts) instead of fat.

Bone Cell Recruitment and Bone Formation

Dr. Rubin’s research found that bone cells grow more and more responsive to frequency. If you want to build bone, back to the anabolic therapies we discussed earlier on this post, you can either try to activate the quiescent, or the sleeping bone cells on the surface of your bone, to tell them to wake up and start forming bone, or you can recruit more bone cells to that task.

Where do you get more bone cells from?

You get them from the bone marrow where the progenitor population (progenitor cells are early descendants of stem cells) reside.

Dr. Rubin found that you can activate the bone marrow population (before they turn into fat) through low intensity vibration.

If you could drive your mesenchymal stem cells (MSEs) and make them commit to become bone cells, then there are more bone cells to make bone. And this is good.

Further, Dr. Rubin found that when his team stimulated the MSEs to become bone, they didn’t become fat.

Turning on a Light Switch: Activating Bone Cells

Dr. Rubin compares the process of activating the stem cells in the marrow to turning on a light switch as you enter a room. Once you turn on the light switch, no matter how much you push the light switch, the lights don’t become brighter.

The same principle applies to the bone cells. You just need the right combination of mechanical signals to turn them on.

How often do you need to “turn on” your bone marrow cells? Dr. Rubin advises you do this at least once per day. We explore why we should do that in the next section where we explore the cytoskeleton.

Frequency Matters: The Cytoskeleton and Bone Formation

The cytoskeleton is a network of protein microfilaments, microtubules and intermediate filaments found in the cytoplasm of all cells (as illustrated below). Just like you have a skeleton, a cell has a skeleton too. If you examine a cytoskeleton under the microscope, the cytoskeleton looks a little scrawny.

cytoskeleton melioguide

How Frequently Should You Use a Low Intensity Vibration Platform?

Dr. Rubin recommends that you use the low intensity vibration platform at least once per day to keep the cells from descending into a dormant state, but then to try and ratchet up the sensitivity of the cells by doing it several times per day.

He and his research team have found in their clinical trials with mice, cells and people, that if they “buzz” (his term for vibration) their subjects two or even three times per day, the outcomes are even more robust.

low intensity vibration osteoporosis

Interestingly, they do not buzz for an hour per day and instead they buzz for five minutes at a time, separated by what’s called a refractory, or a rest period. They find that the whole adaptive system becomes more responsive when they implement this “buzz, rest, buzz again” protocol.

The problem is that in the lab it’s very easy to buzz cells (or mice) three to five times a day because they are captive and are forced to comply.

It is more difficult for humans to incorporate this into their daily routine. He suggests people buzz two times per day, once in the morning while they are brushing their teeth and once in the evening while they are washing dishes.

Relationship Between Fat and Bone Cells

Dr. Rubin states that when you apply mechanical stimulation to build up bone, you avoid building up fat. They have shown this phenomenon not only in cells but also mice. Mechanical stimulation is applied to drive the stem cells to become bone, which, in turn, produces a lot less fat cells.

He has shown that in mice and rats that have been fed a high fat diet, where the control mice become morbidly obese, that the “buzz rodents” not only have significantly less fat, they have significantly more bone.

Will humans experience similar results? The next section examines the research in this area.

Does Low Intensity Vibration Improve Bone Health in Humans?

Dr. Rubin describes a study (5) on the use of low intensity vibration therapy (low-level, high-frequency mechanical signals) on osteopenic and osteoporotic young women done at the Keck School of Medicine in Los Angeles. The study was led by Vincente Gilsanz.

In the study, Gilsanz recruited young osteopenic women, between the ages of 16 and 20, in the lowest quartile of bone mineral density, with at least one fracture due to low bone mass.

The reasons they were osteopenic could have been genetics, an eating disorder, or poor lifestyle choices. All participants had a history of at least one skeletal fracture.

Study Results

Dr. Gilsanz and Dr. Rubin were able to show that the women who stood on the device for at least two minutes per day (in general between two and 10 minutes per day) markedly and significantly increased bone not only in their femur and their thigh bones but also in their spine.

The women who stood on the device for two to ten minutes per day built up significantly more muscle, paraspinous musculature, trabecular bone in the vertebrae, and cortical bone in the femur, than the women in the control group or those who did not comply with the minimum time using the low intensity vibration.

They also had significantly less fat in the thoracic cavity than the women in the control group. That result made the research team realize that mechanical stimulation is not just stimulating bone and muscle, it made them think about the recruitment process.

In that study, the research team was able to show that after one year, the young women that were on the sham device (i.e., not using low-level, high-frequency mechanical signals) continued to lose bone. In addition, they gained fat, both in their thoracic cavity, and throughout their body.

Dr. Rubin realized that there is less fat because the mechanical stimulation is telling the stem cells to become bone and muscle. As we mentioned earlier, without stimulation, the MSC cells within the bone marrow become fat cells.

Vibration Therapy and a Younger Body

While these results are encouraging, the reader should note that a younger body is more responsive to stimulus (whether that be strength training, vibration therapy) than a body that is more advanced in age. As a result, the reader who is a post menopausal women cannot assume that the Gilsanz study implies that you will experience the same outcomes as the study partcipants.

The next study published in 2020 is more appropriate for that reader.

Bone Quality and Low Intensity Vibration Therapy

A paper published in December 2020 (6) by Dr. Felix Wehrli and Dr. Mary Leonard showed that the structure and the quality of bone in post menopausal women improved as a result of low intensity vibration.

The research team used high fidelity MRI (magnetic resonance imaging) to look at the structure and quality of bone. They showed that the quality of the bone in the active group, the post menopausal buzz group, improved, whereas the control group got worse, just as you would expect in a post menopausal group.

Further, they were able to demonstrate it an active group of these women that were buzzed, that their bone marrow actually improved to be more vital than the women in the control group, who had turned more towards fat.

Dr Rubin points out that once you allow your bone to become osteoporotic or your bone marrow to become composed of fat, it is more challenging to get your bone and marrow back to a healthy state. It is much easier to keep it healthy, rather than make it weak and try to make it better.

How Does Low Intensity Vibration Transmit Through the Body?

A low intensity vibration platform device delivers exceedingly small signals — about 120 microns in displacement.

However, this very subtle vibration has to transmit up through your knees, through your hip, to your spine in order to stimulate the bone marrow cells in each of those regions. How does this happen?

marodyne low intensity vibration melioguide

If 100% of the signal starts at the plate (as illustrated above at the base of the vibration platform), how much of it actually reaches your spine?

The signal leverages a phenomenon called the transmissibility function.

Viscoelastic Material and the Transmissibility Function

Before we explain transmissibility, we need to touch on the concept of viscoelasticity. Let’s start with something you can find in your kitchen — a sponge.

The common kitchen sponge is a viscoelastic material in terms of its material properties and the way it displaces and changes with frequency.

For example, if you take a kitchen sponge, fill it with water and squeeze it really slowly, the water will dribble down your arm. That’s because you’re slowly displacing the water out of the sponge.

If you take that same sponge and you slam it against the kitchen counter, the water explodes and goes everywhere. (If you do this experiment at home, you can blame science for the mess.  But make sure you clean up everything, otherwise, your family members might be less than amused.)

Your muscular skeletal system is also a viscoelastic system and acts in a manner similar to the kitchen sponge.

With that in mind, how do those really small signals emanating from the base of your feet reach your spine?

How Signals Transmit

When you stand with your knees straight, your skeleton becomes a long rigid system. Higher frequency signals transmit (because of the transmissibility function, mentioned earlier) effectively up through your axial skeleton. The viscoelasticity quality of your skeletal system allows the signal to propagate through the skeleton.

However, that can change once you bend your knees. When this happens, the low intensity vibration signal no longer transmits as well as when you keep your knees straight. Once you bend your knees (a mini squat), the mechanical signal is lost to the muscles in your legs.

This is why you should not flex your knees while using a low intensity vibration device. You want the signal to propagate from your feet to your spine.

How much of the low intensity signal propagates through your skeleton?

When you stand straight on the device, the platform uses the skeleton as a transducer. It is very efficient. Under this circumstance, Dr. Rubin reports that about 80% of that mechanical signal is transmitted to your hip and spine at 30 cycles per second.

Clench Your Teeth Check

How do you know if the signal is transmitting to your upper torso? Dr. Rubin states: “If you stand on a low intensity vibration device, and you don’t clench your teeth, if you put them very closely together, you can feel them very slightly chatter a little bit. It’s a great way to make sure you device is working. As soon as you put your teeth together and feel them chatter, gently bend your knees and your teeth no longer chatter, because your skeleton is no longer transmitting the signal.”

Earlier in the post, Dr. Rubin discussed the risks associated with whole body vibration platforms that operate at high magnitude vibration levels. The alert reader is probably wondering about the transmissibility of signal through the skeletal system associated with these platforms. Let’s cover that topic next.

Whole Body Vibration Systems versus Marodyne LiV

In 2013, Dr. Rubin and colleagues at Harvard Medical School published a study (7) comparing a low intensity vibration platform (from Marodyne) with commercially available whole body vibration platforms from two manufacturers: Power Plate and Vibrafit.

The study measured the intensity of the vibration platform (measured in G forces) and had the subjects keep their knees straight and then bend their knees to reduce transmissibility.

While manufactures sometimes publish displacement (usually in millimetres or microns) and frequency, they often shy away from publishing intensity (in G forces) under different poses. (However, I have recently found a few manufacturers who promote their high intensity levels as a requirement for improving bone health!)

The research team used “skin and bite-bar mounted accelerometers, [to measure] transmissibility to the tibia and cranium … in six healthy adults standing on a programmable whole body vibration device as a function of frequency and intensity.”

Dr. Rubin and his team concluded “Vibration can have adverse effects on a number of physiologic systems. This work indicates that readily accessible [high magnitude] whole body vibration devices (Power Plate and Vibrafit, in this case) markedly exceed ISO-2631 guidelines for safety, and extreme caution must be practiced when considering their use.”

They further found that “transmissibility to the cranium was markedly attenuated by the degree of flexion in the knees.”

This probably explains why Power Plate recommends you flex your knees when you stand on their whole body vibration platform. Over time and extended use, a whole body, high intensity vibration platform will likely cause damage to your knees and other joints, as well as many other body parts including the brain and eyes.

Why a Frequency Rate of 30 Hertz?

Dr. Rubin and his team of researchers at SUNY Stony Brook found that the 30 hertz clock rate is the optimal frequency rate for vibration.

Why? It is related to the transmissibility function discussed earlier in this post.

Earlier in this post Dr. Rubin mentioned that muscle works between 20 and 50 Hz. However, there is a reason they actually drive the plate at 30 Hz and do not go above 30 Hz.

They found that at the 30 Hz clock rate (and just slightly above), the transmissibility function, the amount of signal from the floor to your hip and spine, is very efficient at 80%.

Above 30 Hz, at about 33 to 34 Hz, the transmissibility function drops off significantly and goes from 80% to around 50-40% signal effectiveness.

Dr. Rubin states that “it’s very, very important that, at least from our perspective, that we stay within this window of 30 Hz. Once you go above [that rate], the signal even though it’s potent biologically, if it doesn’t reach the spine, it’s of no consequence.”

In other words, the signal may reach your hips but will not reach your spine, and hence your spine will not benefit from the vibration.

How Does Low Intensity Vibration Therapy Work?

Low intensity vibration therapy compresses mechanical stimulation. For adults, standing on a low intensity vibration device for 10 minutes is equivalent to the muscle activity that occurs from eight hours of standing up tall.

The modality tricks the muscle, the marrow, and the bone cells into thinking that they are running a marathon, where in reality you are standing on a low intensity vibration plate.

As we age, our body systems begin to break down. Like it or not, an older body is not as responsive to mechanical stimulation as a younger person’s.

Low intensity vibration therapy assists that person (of advanced age) who is walking round the block two times per day, or playing tennis at the age of 70, but who’s system isn’t as responsive as that of a 25 year old.

Dr. Rubin’s experience is that low intensity vibration works independent, or in synergy with, people who are committed to exercise.


Chapter 3: Using a Low Intensity Vibration Platform

In this chapter we discuss the use of low intensity vibration for certain populations. This chapter is based on the third interview I had with Dr. Rubin. You can find that video below.

Again, the written copy below the video explains many the key issues that surfaced during our conversation.

Is the Marodyne Low Intensity Vibration FDA Approved?

The Marodyne Low Intensity Vibration platform is approved for treatment of osteoporosis in the Europe Union (EU). The device is approved by Health Canada as a certified medical device. Marodyne is not approved in the US for the treatment of osteoporosis.

Low Intensity Vibration is something to consider in conjunction with (but not a substitute for) pharmacologic treatments for osteoporosis, as well as exercise and nutrition.

Marodyne Price Discount for Readers

If you have an interest in the product, you can contact Marodyne and they will get back to you to address any questions you have.

If you decide to purchase the device, they will give you a discount on the purchase price.

How Safe is Low Intensity Vibration for People with Joint Replacements?

In 2015 Dr. Rubin did a clinical trial with Dr. Doug Keil at Harvard University examining the effects of low magnitude mechanical stimulation to improve bone density in persons of advanced age (8).

The research team recruited a group of frail elderly people between 75 and 95. The majority of the study candidates had rods, and a mixture of total knee and total hip replacements.

The team found that there were no adverse events or loosening of rods during the use of the low intensity vibration platform. It is always a good idea to have a conversation with your physician or your orthopeadic surgeon if you have had a joint replacement or have plates or screws before engaging in LiV treatment.

Is Low Intensity Vibration Safe for People with Compression Fractures?

Dr. Rubin has not studied compression fractures, and whether low intensity vibration is good or bad for them.

He does, however, mention a group in Hong Kong that has published work (9) on femoral neck fractures. This research team put their subjects on low intensity vibration devices and demonstrated that it can accelerate and augment healing.

In general, someone should wait the six to eight weeks after a new vertebral compression fracture before they exercise.

However, we should put low intensity vibration (LiV) therapy in context and compare it to walking down the street. The impact of your heel (or the impact strike) on the ground generates an acceleration of around 1.2 G, just above Earth’s gravitational field.

LiV is at 0.4 G. As a result, there is less of a mechanical challenge to the region of compression/repair compared to walking down the street.

How to Use a Low Intensity Vibration Platform

When standing on the low intensity vibration plate, Marodyne suggests you keep your knees straight but not locked. You should feel a gentle vibration up to your jaw.

The machine is set for a 10 minute session. The ten minutes duration has been shown to be long enough to turn on the MSCs. Beyond a 10 minute session you don’t benefit as much as if you would if you waited a few hours and repeat another 10 minutes later in the day.

Once you have “turned on the cells”, more vibration time does not increase their excitability. Remember, the minimum time period to keep the cells from turning into fat would be at least once every 24 hours.

Using the Marodyne 2 to 5 hours before you exercise would optimize your exercise session, on a cellular level.

For maximum benefit you would either exercise or stand on the Marodyne every few hours. Any opportunity for exercise or standing on the Marodyne for 10 minutes is an extra boost to your mesenchymal stem cells.

Will a Low Intensity Vibration Platform Improve Bone Density in Wrists and Arms?

Dr. Rubin has not studied the effect of a low intensity vibration platform on the upper extremity (wrists and arms), however, he would does not anticipate, based on his study of the transmissibility of the signal, that it reaches the upper extremity.

He did identify a group in Brazil that has used low intensity vibration in subjects who were wheelchair-bound. The researchers directly stimulated the upper extremity with vibration, with the result that the people can generate more power with their arms following use.

How Does Low Intensity Vibration Work With Bisphosphonates?

There is a study underway examining the effects, if any, of low intensity vibration in combination with bisphosphonates. The results have not been published so Dr. Rubin is unable to provide a definitive answer at this time.

Keep in mind that bisphosphonates stop the osteoclasts, the bone eating cells, from cleaning the bone. However, bisphosphonates do not stimulate the bone formation cells.

Low intensity vibration, on the other hand, is anabolic in that it stimulates bone. As a result, while you are buzzing bone to grow, you’re taking antiresorptive to stop the loss. There might be some synergy and benefit but we will not know until the study results are published.

Chapter 4: Review of Key Research in Whole Body Vibration Plates for Osteoporosis and Bone Density

There is a large library of studies and meta-analyses done on the effects of whole body vibration plates on bone density and bone health. Unfortunately, a number of these studies have conflicting conclusions. They also vary dramatically in what they studied making comparisons of their results with other studies very difficult to interpret. Finally, clinical trials involving humans are very difficult to run (because they involve humans).

These contradictions, inconsistencies, and clinical challenges make the decision to use whole body vibration therapy confusing and frustrating for the general reader.

For reasons of brevity, I will not cover all the published studies. Instead I will discuss one study conducted at Toronto General Hospital, largely because it is fairly prominent in the minds of many people who follow this category. Along the way I will show that its conclusions are not completely applicable to the low intensity vibration approach presented in this article by Dr. Rubin.

Effect of 12 Months of Whole-Body Vibration Therapy on Bone Density and Structure in Postmenopausal Women

In a 12 month study on whole body vibration, published in 2011, Lubomira Slatkovska, Angela Cheung and colleagues concluded that “whole-body vibration therapy at 0.3g and 90 or 30 Hz for 12 months did not alter BMD (bone mineral density) or bone structure in postmenopausal women who received calcium and vitamin D supplementation.” (10)

Summary of Study Methods

The research team at Toronto General Hospital recruited “202 healthy postmenopausal women with bone mineral density (BMD) T-scores between 1.0 and 2.5 who were not receiving prescription bone medications.” The study participants were recruited primarily by using “posted flyers, word of mouth, and our postmenopausal health newsletter in the Greater Toronto Area.” Recruitment was conducted between October 2006 and November 2008.

One of the investigators “randomly assigned [the study participants] to 1 of 3 groups (allocated with a 1:1:1 ratio) by using a block-randomization scheme and sealed envelopes.”

Eligible participants were assigned to receive 1 of 3 interventions:

  1. 0.3g, 90-Hz WBV;
  2. 0.3g, 30-Hz WBV;
  3. or no WBV (control group).

Sham WBV was not provided to control participants because of limited funding; thus, participants knew whether they were in the control group.

The study participants were asked “to stand on a low-magnitude (0.3g) 90-Hz or 30-Hz WBV platform for 20 minutes daily or to serve as control participants; all participants received calcium and vitamin D.”

Independent assessors used “trabecular volumetric BMD and other measurements of the distal tibia and distal radius with high resolution peripheral quantitative computed tomography and areal BMD with dual-energy x-ray absorptiometry at baseline and at 12 months.”

How the Participants Used the Whole Body Vibration Platform

The research team “chose to examine low-magnitude (0.3g) WBV at 90 and 30 Hz because high-magnitude (greater than 1g) WBV has been shown to have deleterious effects in occupational settings. The International Organization for Standardization recommends its use for only short intervals or not at all in industries that use machinery involving vibration (ISO 2631).”

At the start of the study, participants were asked to stand on the platform for 20 minutes daily for 12 months at home. They were instructed to stand erect and with neutral posture at the neck, lumbar spine, and knees. In addition they were told to wear socks or stand barefoot and not use excessive foot or body movements.

Control participants were asked not to use WBV therapy.

At baseline and at 12 months, volumetric bone mineral density (trabecular, cortical, and total) and bone structure (cortical thickness and trabecular thickness, number, separation, and bone volume fraction) were measured at the distal tibia and distal radius. The investigators used high-resolution peripheral quantitative computed tomography (HR-pQCT). Areal BMD was measured at the femoral neck, total hip, and L1 to L4 lumbar spine with dual-energy x-ray absorptiometry (DXA).

Their “prespecified primary outcome was trabecular volumetric BMD (bone mineral density) at the distal tibia.” They selected this outcome “because trabecular bone tissue at a weight-bearing site closest to the oscillating plate was expected to have a greater response to WBV than other measurements or sites.”

Reported Results

Slatkovska and Cheung reported that “twelve months of WBV therapy at 90 or 30 Hz resulted in no significant change in either HR-pQCT or DXA bone outcomes compared with no WBV.”

They concluded: “12 months of low-magnitude (0.3g) WBV at either 90 or 30 Hz had no effect on BMD or bone structure in healthy, community-dwelling, postmenopausal women who received calcium and vitamin D supplementation, and is thus not recommended for preventing age related bone loss in this population.”

Interpretation of Results

The Cheung clinical study was a difficult study to do because it involved human subjects over a 12 month period. It also presented the research community with important information. They deserve applause for the work.

However, several issues need to be considered before applying the results of a clinical trial in 2011 to the low intensity vibration technology available in 2021.

No Bone Loss

First, the goal of most interventions for most people, whether it be exercise, pharmaceutical or vibration therapy, is to avoid continued bone loss. In other words “over time, maintaining is gaining”. In the Cheung study neither group (the two intervention groups and the control group) lost bone during the 12 month period. One would expect, at least, some decline in the control group over the 12 month period – but for some reason this did not happen.

One possible reason that all three of the groups did not experience bone loss, regardless of intervention, is that all of the groups exercised or were active during the 12 month period. This likely offset the effects of the vibration therapy. A careful read of the study shows that they recruited participants primarily by using “posted flyers, word of mouth, and our postmenopausal health newsletter in the Greater Toronto Area.”

I anticipate that the people on their postmenopausal health newsletter, for example, were motivated to improve their bone health and continued bone healthy activities, such as exercise. Further, the researchers did not tell the three study groups not to exercise or maintain activities that improved bone health for the 12 month study period.

Perhaps the study might have been more telling if they selected participants who were losing bone (to see if the vibration was effective or not in arresting bone loss) or if they ran the study for more than one year.

In their 2020 study, Wehrli and Leonard (5) state “previous studies that failed to demonstrate osteogenic effects of low-intensity vibration in healthy adults did so perhaps because the adults were already experiencing the stimulatory mechanical signals during normal ambulation or daily physical activity.”

Juvent Hertz Rate

Second, the research team used the Juvent vibration plate available in 2011. The 30 hertz clock rate that they used was actually running at 38 hertz.

Earlier in the post I mentioned how Dr. Rubin identified a sweet spot for vibration at around 30 hertz and above that rate the effectiveness dropped significantly. (Hence, the 90 Hz rate group was destined to underperform.)

If you can recall, Rubin and colleagues found that at the 30 Hz clock rate (and just slightly above), the transmissibility function, the amount of signal from the floor to your hip and spine, is very efficient at 80%. Above 30 Hz, around 33 to 34 Hz, the transmissibility function drops off significantly and goes from 80% to around 50-40% signal effectiveness.

Rubin and team also found that the 30 hertz rate is optimal to stimulate bone cell activity in the bone marrow.

Measurement Techniques

Third, the primary outcome in the Cheung study was “trabecular volumetric BMD and other measurements of the distal tibia and distal radius.” They used “high-resolution peripheral quantitative computed tomography (HR-pQCT).” In addition, areal BMD was measured at the femoral neck, total hip, and L1 to L4 lumbar spine with dual-energy x-ray absorptiometry (DXA).

These measurements are far less sensitive than CT (used in other studies) and is not as versatile as MRI (magnetic resonance imaging). In the 2020 study at the University of Pennsylvania, Wehri and Leonard employed MRI to determine not just bone density but also bone quality. Further, there were able to examine bone marrow and determine that the marrow viability remained high.

As well, they found that the fat infiltration that is normally seen with aging, was suppressed. This indicates that the stem cells in the bone marrow were not been shoved out by adipocytes (fat cells). As we mentioned earlier in the post, bone marrow activity, in particular the fate of the stem cells, is a major contributor to bone health.

Effect of Low-Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre-Osteoporotic Postmenopausal Women: A Randomized Placebo-Controlled Trial

In late 2020, Dr. Felix Wehrli of the University of Pennsylvania and Dr. Mary Leonard of Stanford University, published Effect of Low-Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre-Osteoporotic Postmenopausal Women: A Randomized Placebo-Controlled Trial, in the Journal of Bone and Mineral Research. (6)

The study was similar in format as the 2011 clinical study by Dr. Lubomira Slatkovska and Dr. Angela Cheung. However, there were a couple of key differences.

First, the Wehrli study was able to looked deeper into the bone with the use of and MRI (magnetic resonance imaging). This allowed them to determine not just bone density, it also gave them insight into the effects of low intensity vibration on bone quality and bone marrow activity.

Second, the configuration of the low intensity vibration was closer to that described by Dr. Rubin (in this article) and therefore is more indicative of the results one could see from the usage of a device such as the Marodyne LiV platform.

Summary of Study Methods

The research team enrolled its first and last randomized participants in April 2014 and October 2017, respectively. Follow-up study visits continued into 2018. Postmenopausal females aged 45 – 65 years were eligible for the study.

Subjects meeting the entry criteria at the screening visit were randomly allocated 1:1 to either an active low-intensity vibration or placebo device designed for home use.

Briefly, the device, which resembles a large bathroom scale, oscillates in the vertical direction at a frequency of 30 Hz with 0.3g acceleration, requiring a displacement of approximately 90 μm.

Participants were instructed to stand on the platform in a relaxed stance, with knees neither locked nor bent. They had to be either barefoot or wearing stockings for ten minutes daily over a 12-month period. The device is designed to induce the maximum possible amplitude of stimulation all the way up to the spine with a given vibrational load at the feet.

The distal tibia (3% up the tibia) was chosen as the primary site for bone microstructure and stiffness measurements because of the proximity to the external mechanical stimulus applied to the feet and because it is a site rich in trabecular bone.

All subjects underwent a series of imaging procedures involving MRI at the tibia and spine, DXA of the hip and spine, and peripheral quantitative computed tomography (pQCT) at the tibia, as described below.

For this randomized trial, a total of 415 women were telephone screened, of which 182 (44%) were eligible for a screening visit. Of these, 117 (64%) women completed the screening visit and 87 (74%) were eligible based on DXA, BMI, and lab criteria. Eighty (92%) were randomized, with 42 (52%) being given active devices and 38 (48%) being given placebo devices.

The two primary outcome variables examined were computationally quantified stiffness of the distal tibia bone obtained from MRI-derived bone structure, and independently, a measure of marrow metabolism, the vertebral bone marrow’s adiposity.

Additional secondary variables included DXA bone densities of the spine and hip, as well as pQCT measures at the distal tibia, and vertebral deformity.

Results

This prospective, randomized, double-blinded, 12-month trial of ten minutes of daily low intensity vibration in pre-osteoporotic, postmenopausal women demonstrated beneficial effects on MRI-derived distal tibia stiffness, trabecular microstructure, and lumbar vertebral adiposity.

It should be noted that most previous studies that reported beneficial effects of low intensity vibration intervention involved cohorts with severely compromised bone quality at baseline. For example, vibration interventions have been found to be beneficial in patients with renal osteodystrophy [33], disabling conditions [25], idiopathic scoliosis [26], cerebral palsy [27], Crohn’s disease [31], Rett syndrome [48], child cancer survivors [49], and young women (15 – 20 years) with low BMD and a history of bone fracture [23].

These studies, taken together with the results of the present work, suggest that low-intensity vibration may be best suited for individuals with compromised bone quality lacking regular stimulatory cues.

Vibration therapy may thus serve as a potential surrogate for exercise.

Comparison with Other Research Studies

Previous studies that failed to demonstrate osteogenic effects of low-intensity vibration in healthy adults did so perhaps because the adults were already experiencing the stimulatory mechanical signals during normal ambulation or daily physical activity.

In contrast to other low-intensity vibration studies that relied mainly on bone density as the primary endpoint, Wehrli and Leonard used finite-element-derived whole-tibia stiffness as the primary outcome variable. This is a parameter that showed the most significant treatment effect compared to conventional measures of bone.

Previous studies have also demonstrated that MRI-based finite element analysis is sensitive to changes and differences in bone not captured by more traditional parameters focusing on bone volume and architecture.

Conclusions

Data presented in the Wehrli and Leonard study provides “compelling new evidence supporting the hypothesis that the intervention reduces lumbar bone marrow adiposity quantified by spectroscopic imaging. This, in turn, indicates enhanced commitment of mesenchymal stem cells toward the osteoblastic lineage via downregulation of the nuclear hormone receptor, PPARγ. The important results suggest “a reduction in the rate of marrow adipogenesis to some degree, thereby retaining or enhancing the capacity for osteoblastogenesis.”

Data from the study “suggest that exogenous stimulation in the form of low amplitude cyclical loading could be beneficial by slowing down postmenopausal bone loss in otherwise healthy women, especially those who might face barriers to regular exercise.”

While the treatment effects observed after one year of vibration therapy are modest, they are nevertheless highly significant, suggesting that the intervention at least stabilizes postmenopausal bone loss. The results also shed new light on the connection between osteogenesis and adipogenesis, from the perspective of intervention involving very low amplitude cyclical loading.

In summary, Wehrli and Leonard conclude that “the data suggest that low-intensity vibration treatment as a preventive strategy may have potential as a non-pharmacological alternative to antiresorptive and anabolic agents, without incurring adverse side effects.”

Chapter 5: Vibration Plates for Osteoporosis — FAQs

On September 8, 2022 we hosted a webinar with several expert panelists on vibration plates for osteoporosis and whether they reduce the effects of osteoporosis and improve bone density. The attendees submitted questions and the panelists answered the questions. The panelists were Dr. Clinton Rubin, Ian Cutts of Marodyne US, and Margaret Martin.

Here are the questions in the order they were presented.

1./ Research on Low Intensity Vibration Plates for Osteoporosis (00:38:11)

Are there any peer reviewed papers on the effectiveness of low, intensive vibration therapy plates in the treatment of osteoporosis and somebody else added to that? Are there any trabecular bone score data over time with the use of the paradigm?

According to Dr. Rubin there are a number of peer-reviewed papers that show efficacy in postmenopausal women of vibration plates for osteoporosis management. Several peer-reviewed papers show that low intensity vibration plate therapy can slow bone loss. Remember that the goal here is not necessarily to gain bone, but to stop the further loss of bone.

University of Nebraska

A collaboration he did with Bob Recker at the University of Nebraska demonstrated that:

Rubin C, Recker R, et al. Prevention of Postmenopausal Bone Loss by a Low-Magnitude, High-Frequency Mechanical Stimuli: A Clinical Trial Assessing Compliance, Efficacy, and Safety. JBMR 02 December 2009

https://asbmr.onlinelibrary.wiley.com/doi/full/10.1359/JBMR.0301251

Chinese University of Hong Kong

A study out of Hong Kong from the Chinese University of Hong Kong, published by KS Leung on peri- and postmenopausal women showed that low intensity vibration plate therapy accelerated the healing of fractures in the femoral neck in postmenopausal women:

Leung KS et al. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly–a cluster-randomized controlled trial. Osteoporosis International. 2014 Jun;25(6):1785-95.

https://pubmed.ncbi.nlm.nih.gov/24676848/

University of Pennsylvania

Finally, last year a group from the University of Pennsylvania, lead by Chamath Rajapakse, published a paper where they used MRI in a group of postmenopausal women. This not only shows that low intensity vibration therapy builds up the quantity of bone, but also the quality of bone. This addresses the trabecular bone score (TBS) question.

The University of Pennsylvania group published their study results in the Journal of Bone Mineral Research. The paper indicated that low intensity vibration plate therapy showed significant improvements in trabecular bone score (TBS) and bone strength in postmenopausal women.

Rajapakse C et al. Effect of Low-Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre-Osteoporotic Postmenopausal Women: A Randomized Placebo-Controlled Trial. JBMR. 2021 Apr;36(4):673-684.

https://pubmed.ncbi.nlm.nih.gov/33314313/

2./ Comparison with Less Costly Vibration Platforms (00:41:07)

Have there been any studies on or comparisons with less costly vibration plates for osteoporosis?

Dr. Rubin responded by stating: I’m a scientist. I study the science of mechanical signals on stem cells. It’s what I do for a living. The clinical trials of all the studies I’ve done over the past 40 years as a scientist are by far the hardest things I’ve ever done.

Mice, rats, rabbits or my sheep are very compliant. They show up every day for my studies and lab.

People, on the other hand, are difficult. As a result clinical trials with people are very expensive. They’re hugely time consuming and they’re pretty persnickety. So when I run a clinical trial, I ask myself can it influence this disease?

I don’t design a trial to test one vibration plate versus another. I have a device that I very much believe in, and I’m trying to find out how well it works to curb disease.

It’s not my goal as a scientist to compare it to other devices.

If I were listening to this talk and I had a favorite device X from company Y, I would ask the company to show you the clinical trial results from their studies. I know the field pretty well and there are very few hardcore peer-reviewed clinical trials out there that look at different devices.

No, I’ve never compared the two, but I do know quite a bit about devices out there, and many of them are terrifying.

3./ Confusion with Frequency (Hertz) Settings  on Vibration Plate (00:43:32)

I have a platform (I won’t name the brand; it is not the Marodyne device) which by the way, is an expensive brand. I purchased it quite a few years ago and used sporadically. How long would it take to see an improvement by using the vibration settings at 30 Hertz for 10 minutes per day, as in your posted interview? And is there a way of knowing if there’s an improvement, as you can only get a bone density scan once a year.

According to Dr. Rubin, if you like the vibration plate you have and you’re happy with it and, and your family and physician support you using it, great.

What you need to understand is that it’s not simply the 30 cycles per second. There are several parameters involved that actually create the mechanical environment for the cells that we are talking about.

Clock Rate in Hertz

There is the clock rate, the hertz, the cycles per second, how many times per second, it buzzes.

Amplitude

There’s also the amplitude of the intensity. How much does it actually displace? You can imagine that if you are displacing at one cycle per second, for one centimeter, the acceleration’s actually quite small, but if you’re doing that 50 times per second, one centimeter, the acceleration is frighteningly high. So there’s hertz cycles per second. There’s intensity, which is a derivative of the displacement of the device.

Duration

There’s the duration, which Margaret and I have already talked about. How, how long per day do you need and how many times per day. There’s something called a refractory period, which is probably getting a little beyond what we want to talk about here.

Why the Hertz Rate and Displacement Matter

To answer a question that the reader’s question poses regarding the 30 Hertz setting. That setting is very, very important because it’s in the frequency of your muscle contractions.

As I pick up my coffee cup, my muscle is vibrating between 20 to 50 cycles per second. It’s how muscle contracts. It’s a very inefficient motor. We try to mimic physiology and it’s why we were in this 30 Hertz range.

But the other question to ask the vendor is what is the displacement of the device?

So as Ian has already pointed out, the Marodyne device generates 0.4g at 30 Hertz. It displaces about 120 microns, which is the width of around two human hairs. It’s not very much.

If your device is shaking and shaking, your chances are that the accelerations are way above one G. (One G is earth gravitational field.)

Most of the devices in gyms or some of that are sold at Costco are frighteningly high. They are for elite athletes that are crazy enough to stand on them.

G Force

So if you osteoporosis, my strong advice to you, beyond exercising every day, is to figure out what the G Force of the device is.

Specifically, try to determine the acceleration of the device that you are using. If it’s above two or three G be very, very wary of it. Not because I’m saying that, because the National Institutes of Occupational Safety and Health and the International Standards Organization (ISO: a global conglomerate of safety in the workplace) say that these devices are not safe for exposure of more than six seconds per day.

My advice is do not stand on them.

They’re still allowed to sell these devices to general consumers because unlike a device in the workplace, it’s not regulated. Just because these devices are being sold out there, it doesn’t mean they’re safe.

4./ Age and Low Intensity Vibration Therapy (00:48:51)

The question is from a reader who is 69 years old: Is there any point in using low intensity vibration therapy, as I’ve read that the older person is the less the responsive it is to the therapy such as this.

According to Dr. Rubin, the reader is correct that many of the studies we have shown in elderly population, including the frail elderly with a mean age of around 84, don’t show an anabolic response.

We don’t show a bone producing response to the vibration signal, but I’ll remind people, as I believe Margaret has as well, that in osteoporosis, your first order of business is to not lose more bone before you can turn the ship around.

You have to slow the resorption process and everything that we’ve ever published in any paper that I’m aware of, that those standing on a low intensity vibration device do not show progressive loss of bone. That is a worst case, best outcome. It stops bone loss.

For several people, even in the elderly population, there is a bone gain, but that can be anecdotal. I would say that anything you can do including eating right, exercising, maybe using low intensity vibration therapy, can slow bone loss.

5./ Should an Active Senior Use Low Intensity Vibration Therapy (00:50:50)

Will individuals who do weight training two times weekly, walk one hour at least per day and do challenging lifting with gardening benefit as much from the device as someone who is not very active?

Here is Dr. Rubin’s response: I applaud this person for getting out gardening, exercising, et cetera.

I would say that if you have a low intensity vibration device and you are committed to exercise, I would figure out how to schedule and budget your day. Let’s say you wake up in the morning, you can brush your teeth while standing on the device for 10 minutes or five minutes.

This again is sort of predisposing your cell population to be more responsive to exercise later in the day. I would say, although I’ve not done a study, we are doing a study right now in Australia where the results will come out probably about a year and a half or two years where they’re standing on a device and exercising, asking that very question. At this point, our science would suggest that it could be beneficial.

6./ How Often Should You Use the Marodyne LiV? (00:52:22)

A reader asks: I use mine most days twice for 4 mins each. Is that as good as 10 once a day?

We have talked already about building up cell responses and basically harnessing the early transitioning, the early adaptation of cells, early in the morning.

Three hours later that refractory period takes advantage of that and sort of ratchets up the response.

I would turn around and say it the other way: If I had 10 minutes to budget per day to use a low intensity vibration device, I would do exactly what the viewer is asking.

I would stand on it twice per day for four minutes each day, rather than once per day, for 10 minutes per day.

The added advantages that we have found in exit interviews in our clinical trials is that people don’t mind the device and they don’t find it harmful. Many people find it pleasant, including my wife who stands on it every day for 10 minutes per day.

But if it’s hard to find that 10 minutes, it’s easier to budget two short periods per day and there might be an actual advantage to do it.

Our clinical trials with kids now go through the hospital board of two treatments twice per day because of encouraging compliance rather than efficacy.

7./ Can You Target Different Parts of the Anatomy? (00:54:06)

Can we sit on the LiV to improve the effectiveness in the lumbar spine? Could the vibration be targeted directly to the upper part of the body?

Dr. Rubin has studied this question.

He explains: What we did in Sweden is we went into the operating theater and put these Steinman pins (long pins with screw ends) into volunteers in the trochanter (the end of the femur or the thigh bone) and into transverse processes of the spine.

This showed that the transmissibility of the signal and how it works is very, very effective at 30 Hertz, 30 cycles per second.

What that means, in non-engineering speak, is that if you stand on the device, the 30 hertz signal is very, very efficient at reaching the hip and the spine. It doesn’t actually have to go through the buttocks, or the musculature of the butt, to transmit to the spine.

Although I have not looked at transmissibility of sitting people and I’ve not done a clinical trial on people sitting on the device, by standing on the device, the signal is very, very efficient. Think of it as a very smart device.

I think Ian had already described the Marodyne vibration plate for osteoporosis as being smart.This means that the load bearing bones see the signal the most and your arms, which aren’t being vibrated, see a very, very small signal. I would say standing would be the way to go, if you can.

8./ Low Intensity Vibration and Pelvic Prolapse (00:56:21)

Does the LiV benefit women with pelvic prolapse?

According to Physical Therapist Margaret Martin, low intensity vibration benefits them in the exact same way as it would benefit any everybody else. The benefit is you don’t get the impact on the pelvic floor, the way you would jumping or doing heavy lifts, where you might not be coordinating your breath and your pelvic floor activation to protect your prolapse.

If your prolapse is so bad that it is a grade four, you absolutely definitely want to be using a pessary. It is more gentle on your pelvic floor than walking.

9./ Weighted Vest and LiV (00:57:19)

Would it be a benefit for a thin person to use a weighted vest on the platform?

According to Dr. Rubin the whole idea of the closed loop feedback acceleration of the Marodyne plate, as Ian was describing it, is that it is smart enough to take me (I weigh 165 pounds) or Margaret (it looks like she weighs about 110) and create a vibration signal that it delivers to the standing person (regardless of weight) in exactly the same way.

It’s not about force, it’s about acceleration.

Putting on a weighted best would actually increase the signal and raise issues of safety. I understand why you would want to wear a weighted vest. And I certainly see data that supports the use of weighted vest during exercises, but during the use of the LiV, if it were me, I would stick with the 0.4g.

So if you weigh 110 pounds or 120 pounds, as a thin person standing on the device, I would let the device do the calculations and the work.

10./ Does the Direction of the Signal Matter? (00:58:47)

I’ve heard it matters what kind of directionality the vibrations have and that side to side is better than vertical. Comments?

According to Dr. Rubin, the direction of the signal matters. You want the signal to be straight up and not side to side.

Imagine a fulcrum here and the platform moves back and forth like a see-saw, as opposed to the Marodyne device where the low intensity signal is vertical and low intensity vibration, unlike a Power Plate, that is quite severe.

You can see by the movement of my arms (illustrated in the video), if you stand here, the amount of displacement is very different than when you’re standing here, even though it’s displacing the same amount.

The risk of standing on an alternate base is that it is very hard to control the actual acceleration or force that’s being delivered.

It’s very, very easy to quickly get in range that could be at risk for somebody that’s osteopenic or has T scores at minus one and lower.

I am unaware of studies that directly compare side alternating versus high magnitude vibration versus low intensity vibration. But we have done studies where we looked at safety of them. And let me just put it this way. I, for one, will never stand on one.

11./ Is Standing Barefoot Required (01:00:32)

Is it ok to stand barefoot on the unit?  The instructions say to wear socks.

The reason why Marodyne recommends wearing socks is because people would write Dr Rubin and ask can I wear my stiletto heels before I go out for a fancy dinner? Or can I wear solid shoes?

Marodyne wanted to get shoes out of the equation. Socks are there just because if you and then your spouse uses the marodyne and then your kids come in from the playground and stand on it, the plate might get dirty.

Socks seem a good way to take shoes out of the equation Socks are okay, bare feet are okay. Dr. Rubin stands on it with bare feet because he likes the way it feels.

The other thing is that it’s a metal plate. If you’re in a cold environment or you have a device in a cold room, it’s going to conduct a cold temperature.

Because it is a very slippery surface, those of you who have balance issues, if you’re not using chairs beside you, consider using grippy socks. They have just little bit of silicon at the bottom just to make standing on the device a little safer.

12./ How to Get the Marodyne Serviced (01:02:43)

Since I anticipate buzzing for the rest of my life, what is the procedure to get the platform fixed if it breaks down?

Ian Cutts from Copa Healthcare services the units sold in the United States. In Canada and other countries, the local distributor will have some method in place to get the device repaired.

The Marodyne has a warranty and they’re extremely robust. They’re designed for a long life, 10 years or more. It is hardly possible to break it mechanically unless you drive a tractor over the plate or throw it out of a large building. There might be electronic or electrical problems that could occur in its life.

13./ Turning the Device On and Off (01:04:00)

Does shutting off the platform early or stepping off and getting back on damage the platform?

Ian Cutts states that it shouldn’t do so. There is no risk to the device that it’s going to cease to operate or not give you a reasonable lifetime if you just do shorter sessions.

Don’t worry about switching it off because you have to bend over or get down low to, to do that. It will sleep between usage. So when you get off it, it will not recognize a load and it will go into a rest state and after five minutes, it then goes into a hibernation until you get back on.

14./ Risk of Retinal Tear on the Vibration Plate (01:05:02)

Is this type of therapy ok for people who have had PVD’s (Posterior Vitreous Detachment) in our eyes and are at risk of a retinal tear?

According to Dr. Rubin there is published literature with people standing on high intensity whole body vibration devices in peered literature and experiencing a detached retina. This is consistent with the ISO standards of risks of exposure to high intensity vibration.

As Ian Cutts has pointed out, the acceleration of the paradigm device says 0.4g, 40% of G. In essence, what Marodyne is trying to do is deliver the benefits of mechanical without putting the risks of mechanical in. I’m not going to say it’s safer than walking, because I don’t want anyone to stop walking, but the Marodyne is safe for weaker retinas.

15./ Varicose Veins and the Vibration Plate (01:07:06)

Is it ok to use the LiV if you have a varicose vein?

In Dr. Rubin’s study with the frail elderly at the Harvard varicose veins was not an exclusion criteria. So people in that cohort had varicose veins. They never had any adverse events from them. The research team didn’t follow up on whether it was beneficial to them or not.

Dr. Rubin knows several people with varicose veins who have not complained about them. But they have not studied the physiology of varicose veins.

A colleague of Dr. Rubin studies blood flow in the lower limbs and shows that it enhances blood flow in the lower limbs. He does not know whether it can help with our varicose veins, but it’s not harmful.

If you have concerns, you can wear your compression socks while you’re standing on the Marodyne.

16./ Arthritis in the Joints (01:08:19)

Does LIV harm or help arthritis in the knee?

Dr. Rubin has done studies looking at the morphology of cartilage in aged rats. Low intensity vibration can be good in terms of infusing fluids and keeping morphology. They have not studied cartilage in people, but in preclinical models, we have shown that it is beneficial to disc and particular cartilage.

17./ Weight Bearing or Low Intensity Vibration (01:09:49)

A reader states that she heard on an osteoporosis Facebook group that a physical therapist, not Margaret, stated that you are better to do 10 minutes of weight bearing or strength training a day instead of 10 minutes on LiV platform. Care to comment?

Dr. Rubin has never seen a study that compares the two but advises, do both, if you can.

18./ Pharmaceuticals and LiV (01:10:21)

Is there any data or observations, over time, of persons on EVENITY also using the Marodyne/LIV system?

Dr. Rubin’s clinical studies use osteoporosis medication use for exclusion criteria because it contaminates why bone is responding. They have not specifically done a clinical trial looking at combination therapies buzzing saying on the device plus Forteo or Fosamax.

Everything that we see in our preclinical trials shows that at worse, they are additive and at best they’re synergistic, they are not combative. The preclinical data suggests that they could compliment each other. So, no reason to be afraid.

A paper Dr. Rubin is about to submit a study of mouse model of breast cancer.

As people know, therapy for cancer treatment can be pretty bad for bone, quantity and quality. One of the downstream concerns of people being treated for breast cancer is risk of osteoporosis.

They’re often prescribed a lot of drugs for the cancer, a lot of drugs for the osteoporosis.

Dr. Rubin has done a study that looks at the mouse model with breast cancer, treated with breast cancer drugs, plus an osteoporosis drug, plus vibration plate for osteoporosis therapy. It shows that the low intensity vibration therapy is as good as the anti-osteoporosis drug, but they do work together.

Soon, they are starting a human trial on women with breast cancer.

Exercise Recommendations for Osteoporosis

Exercise is an essential ingredient to bone health. If you have osteoporosis, therapeutic exercise needs to be part of your osteoporosis treatment program.

But what exercises should you do and which ones should you avoid? What exercises build bone and which ones reduce your chance of a fracture? Is Yoga good for your bones? Who should you trust when it comes to exercises for osteoporosis?

A great resource on exercise and osteoporosis is my free, seven day email course called Exercise Recommendations for Osteoporosis. After you provide your email address, you will receive seven consecutive online educational videos on bone health — one lesson each day. You can look at the videos at anytime and as often as you like.

I cover important topics related to osteoporosis exercise including:

  • Can exercise reverse osteoporosis?
  • Stop the stoop — how to avoid kyphosis and rounded shoulders.
  • Key components of an osteoporosis exercise program.
  • Key principles of bone building.
  • Exercises you should avoid if you have osteoporosis.
  • Yoga and osteoporosis — should you practice yoga if you have osteoporosis?
  • Core strength and osteoporosis — why is core strength important if you have osteoporosis?

Enter your email address and I will start you on this free course. I do not SPAM or share your email address (or any information) with third parties. You can unsubscribe from my mail list at any time.

  • This field is for validation purposes and should be left unchanged.

Summary of Original Article

In the original post, I carefully reviewed a meta-analysis published in 2018 (11) by a team of Spanish researchers led by Dr. Elena Marin-Cascales of the Universidad Católica de Murcia (UCAM) in Murcia, Spain.

The systematic review and meta-analysis evaluated ten “published, randomized controlled trials (RCTs) that investigated the effects of WBV (Whole Body Vibration) on total, femoral neck, and lumbar spine BMD in postmenopausal women and identified the potential moderating factors explaining the adaptations to such training”.

The team found a number of unexplained inconsistencies and conflicting outcomes between the studies. Unfortunately, the inconsistencies and conflicts made it difficult to draw clear conclusions from Dr. Marin-Cascales’ review on the effectiveness of whole body vibration on the treatment and prevention of osteoporosis.

The team made several recommendations regarding the use of whole body vibration therapy for osteoporosis including using high intensity vibration platforms that operate at acceleration levels of as much as 8 G.

It should not come as a surprise to the reader that I have significant reservations about this last recommendation, given the known safety issues related to high intensity whole body vibration platforms (described in detail above).

Conclusion

Exercise and movement play an essential role in the maintenance of your physical, mental and bone health. This article explains why you need to do frequent exercise to stimulate bone cell formation, all the way down to the marrow of your bones.

We covered how vibration can be both a pathogen (in whole body vibration high intensity platforms) and how it can be a surrogate to exercise in low intensity vibration platforms.

About Dr. Clinton Rubin

Clinton T. Rubin, Ph.D., is the SUNY Distinguished Professor of Biomedical Engineering, and Director of the Center for Biotechnology at Stony Brook University in Stony Brook, New York. Dr. Rubin’s research is targeted towards understanding the cellular mechanisms responsible for the growth, healing, and homeostasis of bone, and how mechanical stimuli mediate these responses through the control of mesenchymal and hematopoietic stem cell differentiation and proliferation, to establish non-drug treatment strategies for osteoporosis, obesity and diabetes.

When he’s not teaching, Dr. Rubin is busy researching cellular mechanisms that are responsible for maintaining bones’ health, how mechanical stimulus can help bone grow, and how to help it heal faster after a fracture.

Applications of Research

Dr. Rubin holds ~30 patents in the area of wound repair, stem cell regulation, and treatment of metabolic disease, and is a founder of Exogen, Juvent, Marodyne Medical, and Lahara Bio, which use physical signals to regulate biologic processes. He has published over 300 articles, has been cited ~33,000 times, with an H-index of 93. Unfortunately, some of those citations are used by companies that make unsafe whole body vibration machines.

His research has been put to very good use developing devices that give us non-drug treatment strategies. LiV stands for low intensity vibration and is a non-drug treatment strategy that builds bone. It’s been shown to successfully and safely build bone in persons diagnosed with osteopenia, osteoporosis, and low bone density caused by other diseases or co-morbidities.

He is a fellow of AAAS, NAI, ASBMR, BMES and AIMBE. Dr. Rubin received his AB degree from Harvard, and his PhD from Bristol University, U.K.

Dr. Rubin is a world authority on vibration therapy and whole body vibration platforms and their affect on health.

Further Readings

References

  1. Kiiski, J et al. Transmission of Vertical Whole Body Vibration to the Human Body. Journal of Bone and Mineral Research. First published: 04 December 2009.
  2. Maggiano, J., Yu, MC.M., Chen, S. et al. Retinal tear formation after whole-body vibration training exercise. BMC Ophthalmology 20, 37 (2020). https://doi.org/10.1186/s12886-019-1291-y
  3. Vela J, et al. Intraocular lens dislocation after whole-body vibration. Journal of Cataract Refract Surgery. 2010 Oct;36(10):1790-1. doi: 10.1016/j.jcrs.2010.07.001.
  4. Najarkola SAM, et al. Cochlear Damages Caused by Vibration Exposure. Iran Red Crescent Medical Journal. 2013 Sep; 15(9): 771–774. Published online 2013 Sep 5. doi: 10.5812/ircmj.5369
  5. Gilsanz V, Rubin C, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Mineral Research. 2006 Sep;21(9):1464-74
  6. Wehrli F, Leonard M, et al. Effect of Low‐Intensity Vibration on Bone Strength, Microstructure, and Adiposity in Pre‐Osteoporotic Postmenopausal Women: A Randomized Placebo‐Controlled Trial. J Bone Mineral Research. 13 December 2020.
  7. Muir J, Keil D, Rubin C. Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults. J Sci Med Sport. 2013 Nov;16(6):526-31. doi: 10.1016/j.jsams.2013.01.004. Epub 2013 Mar 1.
  8. Kiel D, Rubin C, et al. Low Magnitude Mechanical Stimulation to Improve Bone Density in Persons of Advanced Age: A Randomized, Placebo-Controlled Trial. J Bone Mineral Research. 2015 Jul; 30(7): 1319-1328
  9. Chow et al. Low-magnitude high-frequency vibration (LMHFV) enhances bone remodeling in osteoporotic rat femoral fracture healing. J Orthop Research. 2011 May;29(5):746-52. doi: 10.1002/jor.21303. Epub 2010 Dec 23
  10. Slatkovska, Cheung et al. Effect of 12 Months of Whole-Body Vibration Therapy on Bone Density and Structure in Postmenopausal Women. Annals of Internal Medicine. November 15, 2011.
  11. Marin-Cascales E., et al. Whole body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis. 2018 Aug;97(34):e11918.

Osteoporosis Guidelines

For more information, check out my Osteoporosis Guidelines.


Comments

March 14, 2011 at 10:34pm

Gloria davidson

I went twice a week for power plate exercise last year and found it hugely beneficial for my arthritis in the lower back. I also have friends with the same arthritic problems who were unable to golf, started doing the power plate training and now golf three to four times a week. I guess it's all in who you talk to .

March 15, 2011 at 12:17pm

Margaret Martin replies

Hello Gloria, I have heard and read about many positive benefits of the power plate. My blog was based on the bone building benefits, which still seems somewhat inconclusive. However, if using it it improves your muscular strength then it will provide more support for your joints ( a big plus for arthritis). Ultimately, if you start moving more, you will have a positive effect on not only your skeleton but on your cardiovascular system your overall well being and your quality of life. The studies on the bone building benefit of the platform try to isolate the benefits of vibration from the benefits of exercise plus vibration. May I ask if you have continued to use it? If not, why not? Thank you for sharing.

May 22, 2012 at 8:43pm

Pamela Klenk

I am ever so happy to see this site! I have an 19 yo son with Idiopathic Juvenile Osteoprosis (Dx age 12). He is now having painful negative effects from IJO. An all time low bone density has also occured. The MD's strongly recommend IV drugs. :(. These come with side effects that could leave him physically much worse then the IJO. I'v been following news of the machine for several years, starting w/usage over seas. I'm a mom looking for the how to save my son and hopefully not give these potent drugs. I am a strong believer in altrunative medicine when it makes sense. I don't have the means to buy this and as to date , have not found a gym or an MD that offer this. Could you offer suggestions? We live in NJ Warmly...

May 28, 2012 at 1:39pm

Margaret Martin replies

Hello Pamela, sorry to hear of your son's condition. I have been searching for a cheaper vibration platform for you but have not had any luck. The only platform I feel comfortable recommending is the Juvent Platform, I have not tried many others. New, they cost $2500. One of my clients gave me a Power Plate. It is so aggressive that I would not recommend it. There are gyms in the Ottawa area called T-Zone which are centered around vibration therapy, I could not find them in your area - maybe someone will respond after this email. Your son should be started on a strengthening program to preserve his joints and strengthen his bones. I would highly recommend that you find a physical therapist in your area.
Let me know how things go.

May 28, 2012 at 2:51pm

Pamela Klenk replies

Hi Margaret Martin, Thank you for your post. The T-Zone sounds wonderful! What a great way to improve bone health on a large scale! When my son was diagnised with IJO, it was because he fell and fractured his hip. Due to AVN-has had 4 surgeries to delay replacement which now needs to be done. Have been searching for a surgeon for over two months (too old for most Children's hospitals and surgeons who deal with adults don't want to touch him) and believe I have finally found one! He is receiving PT but only once a week for core/upper back strength and posture (upper spine is just starting to curve). Walking now causes pain. He is on a low dose ca+ and higher Vit D3. He also has Aspergers Syndrome -very high functioning. Recieved a 4 yr. college scholorship but returned home because pain of feet and hip. Due to sensory issues he will not eat veg./fruit/and next to no milk. I am now reading what you offer free on this site. I'd do anything to help inprove my sons current issues.

March 20, 2016 at 10:08am

Dini

I have osteoporosis and rm. arthritis ....
I have a question in regards to the t-zone vibration machine if you can use it if you have had a knee replacement?
It seems to give some relieve to the arthritic pain, but wanted to know if it is safe to use with my knee replacement..

Thank you

April 14, 2016 at 6:04am

Marcia Guth

Margaret I am looking for someone that has a studio like yours in Pittsburgh, PA. Do you have a professional affiliation organization I can reach out to.
thansk

April 14, 2016 at 10:58am

Richard Martin replies

Marcia: I suggest you check with your state level Physical Therapy association. Many of them have online directories.

March 5, 2019 at 12:37pm

linda grace

Dear Maragret, thank you so much for putting together this blog summarizing the research, very helpful. Could you please give me the link to yoru blog on increasing femoral neck BMD? I searched on the site using very terms with no success.

Pamela, I am so sorry to read of your son's conditon. Sending all good wishes and hoping you find the help and suport you need. I have recently been working with a book I found at our local library called 'Eight Steps to a Pain-Free Back' and it has been immensely helpful to me. Maybe your library can get it for you, and you might find something of use in it for your son. The focus is on posture, but it is far more than that. I've never seen anything like it and wish I had found it ages ago.

March 5, 2019 at 7:58pm

Ann

Linda grace
http://melioguide.com/osteoporosis-prevention/neck-of-femur-femoral-neck/

March 6, 2019 at 1:03pm

Ruth

Hi Margaret,
Thank you for the information above. I have just purchased a MerodyneLIV machine- am 60 yrs old w osteoporosis and BMI under 25. I had also decided to purchase your book Excercises fit Better Bones and am doing the exercises suggested for my health level.
I’m giving this 2 years and will then have a follow up Dexa Scan.
Do you have any other suggestions?
Thank you for your great information!!
Regards,
Ruth

March 7, 2019 at 2:27pm

Richard Martin replies

Hi Ruth,

Thank you for asking! Yes I do have another suggestion. Bones cannot build with stimulus alone. They need the proper nutritional building blocks. Be sure to read and follow the nutritional recommendations:

http://melioguide.com/health-guides/osteoporosis-guidelines/#nutrition

Keep challenging yourself with the strength exercises. Aim to build the weight you are lifting gradually but consistently.

All the best,
Margaret

March 6, 2019 at 4:29pm

linda grace

thanks for the link Ann

March 12, 2021 at 7:39pm

Tiffany Wright

Hello, can you explain why only the 2500$ machines are effective. What should we look for to make sure the machine is good enough. Have u researched recently - for improvement in the low cost options? Thank you for your wonderful work. I’ve recommended you to my menopause clients with osteoporosis.

March 13, 2021 at 7:44am

Margaret Martin replies

Hello Tiffany, Thank you for your question and for recommending me to your clients. We have a blog post that will be coming out in 3 weeks that will explain in detail the differences between the Marodyne and other vibration platforms. I wish it was less costly as well and more accessible to the masses but alas research and intellectual property cost money.

March 30, 2021 at 11:43pm

Claire Forsyth-Cramer

Hi Margaret. I am 64 years old and have osteoporosis.
Have any of the studies you've looked at cited improvements in bone density scan results after using this machine, for women who already have osteoporosis ?

In your References, studies 4 and 5 were for young women and pre-osteoporotic women.
Study 7 says older people didn't benefit as much as the younger women in 4.
Study 9 only showed improvement in spines not femoral necks for those over 65.

Has Dr Rubin published any studies with improvements after using his machine?

Thanks
Claire

April 7, 2021 at 3:56pm

Richard Martin replies

Hi Claire: Good questions. A couple of points.

1./ Many studies exclude osteoporotic women (such as the Cheung study in Toronto) because "previous research (by Dr. Rubin) has shown that less-dense bones may have a greater response to WBV."

2./ The Wehrli and Leonard study (5) published in late 2020 “suggest[s] that low-intensity vibration treatment as a preventive strategy may have potential as a non-pharmacological alternative to antiresorptive and anabolic agents, without incurring adverse side effects.” This study used MRI and looked deeper into the bone to see improvement sin bone density, bone quality as well as a reduction in fat in the bone marrow (often associated with aging).

3./ Older people's bodies benefit less than the younger body from most stimulation. This includes exercise, strength training, and vibration therapy. that is the price of getting on in years.

4./ I encourage you to read Margaret's statement at the beginning of the article as to where she sees LIV to be most effective. It is not a silver bullet (even though we want one) and it does not replace exercise as a treatment modality for osteoporosis. It is a supplement for most people and is ideal for those who cannot (for whatever reason) exercise regularly.

March 30, 2021 at 11:52pm

Claire Forsyth-Cramer

P.S I also want to thank you for your huge dedication to people with osteoporosis. I so appreciate the way you go into the physiology and biochemistry and your committment to scientific rigour. I have taken up weight lifting twice wekly based on your work as the potential side effects of Prolia were very frightening. Thank you again Margaret.

April 7, 2021 at 3:22pm

Richard Martin replies

Hi Claire. Thank you. Happy to hear that you have discovered weight lifting. Keep it up!

March 31, 2021 at 10:29am

Kathy

I was wondering whether low intensity vibration is more effective - or if more effective, how much more effective - than heel drops and similar exercises (jumping, etc). Is there any learning on this issue?

April 7, 2021 at 3:21pm

Richard Martin replies

Hi Kathy. There is no research we know that examines this question. Margaret's article clearly states that low intensity vibration does not replace exercise for individuals with osteoporosis. For certain people it is an excellent supplement and in some cases (where people are unable to exercise) it can act as a surrogate.

May 17, 2021 at 1:47pm

Kristin Fama

For many of us, spending $2000 on the Marodyne platform is prohibitively expensive, no matter how good it is. The Soloflex WBV machine has a controller to specify between 28-60 Hz and can be set to 30Hz. I'd like to know why this machine would differ, if at all, from the Marodyne.

May 17, 2021 at 2:39pm

Richard Martin replies

Hi Kristin. Clock rate is only one variable. The article also points out that displacement is important since the combination of clock rate and displacement determine overall intensity. Overall intensity will, in turn, determine whether the signals are harmful or beneficial. Another variable is whether the movements cause shearing. You might want to avoid that pattern. We are not familiar with the device you mention. You should ask the manufacturer for evidence that the device is not harmful. Good luck with your search and exercise caution.

June 11, 2021 at 10:33pm

Kristin Fama

I appreciate your response, I will look into it, thanks!

July 8, 2021 at 7:26pm

Tina

Hi have just found this article and was wondering if there is any new updates on people who have tried this Marodyne liv machine I have spoken to Powerplate importers and they say there machines can also operate at 30 hertz as well I have watched all videos on research on YouTube its so confusing as there is such a difference in price ???? Thanks Tina

July 9, 2021 at 10:54am

Richard Martin replies

Hi Tina. The article explains that there is more to the vibration device than the clock rate, represented in hertz and we were hoping that the reader would understand this concept. There is also the displacement and the resulting intensity.

As far as our research into the topic (again, as explained in detail in the article), the Marodyne is the only one designed with bone health in mind and incorporates all of the important variables. I would caution you regarding high intensity devices like the Powerplate (again explained in the article) as the usage could be deleterious to your bone health.

July 9, 2021 at 6:35pm

Tina

Hi thanks for the reply yes I did read the whole article but as some of the dates were back in 2011 I just wondered if there was any new update on information. Thanks again ????

August 6, 2021 at 4:18pm

Susan

Hi, Margaret mentioned that there would be a blog post coming out that compares the Marodyne to other vibration platforms. Did this blog post come out? If so, where would I find it?
Thank you!

August 8, 2021 at 9:12am

Richard Martin replies

Hi Susan. We do not plan to cover the topic you mention. We feel that this article (the one you are commenting on) is comprehensive enough. Instead of comparing platforms, we decided to cover the modality in as much detail as possible. This article does that. As it stands, the only device that delivers on this modality is the Marodyne device so there is no need to do a comparison. Thank you.

August 21, 2021 at 1:05pm

Zoe

Hi, what does it feel like when standing on the Marodyne? How far up the body do you actually feel the vibration?

August 23, 2021 at 12:18pm

Richard Martin replies

Hi Zoe. The vibration is very mild and transmits through your body. You might feel a slight chattering of your teeth. The Marodyne people can help you with your product questions, here: https://my-marodyne-liv.btt-health.com/

November 3, 2021 at 9:25am

Joyce

I have read to not use one if you have any kind of implant in your body. Is that true? I had a total hip replacement 13 years ago. I do not want to make it loosen.

November 11, 2021 at 10:50am

Richard Martin replies

In general, it should not be an issue with low intensity vibration (it will be if you use whole body, high intensity vibration platforms like the PowerPlate). However, you should discuss your post operation therapy modalities with your surgeon and Physical Therapist and see if they give the green light as it relates to your circumstance.

November 9, 2021 at 6:29pm

Sherrie Mendelson

Hi Margaret, would you tell me a little about yourself? What is your profession? Also, I am trying to decide if I should buy my own machine or go to a provider.
And how frequently and what length of time can you use these machines?

November 10, 2021 at 11:25am

Richard Martin replies

You read about Margaret here: http://melioguide.com/about/margaret-martin/

We will creating a "how to use" the Marodyne device soon. Stay tuned.

January 11, 2022 at 2:04pm

Catherine

I also am looking for a more affordable alternative to the Marodynd LiV, now selling in Canada for $4500. What does Margaret think of the ***** ***** ***** ****? It is a machine by *****.

January 11, 2022 at 4:42pm

Richard Martin replies

Hi Catherine. There are too many vibration platforms for Margaret to review. At this point and to our best knowledge, the Marodyne is the only product that conforms to the specifications tested by Dr. Rubin and other researchers (as listed in the article).

January 25, 2022 at 2:36pm

Nancy Nichols

I was so exited to hear about Marodyne, no matter what the cost, until (reading between the lines) in totality it appears to be useless for those of us over 70 who have had VCFS and osteoporosis, despite being otherwise quite healthy and active. So as I made my plans to buy one, I couldn’t find anything in the studies in literature that tells me whether I exercise or not, at age 72 with osteoporosis, that will be of any benefit to me whatsoever. If I am misunderstanding kindly let me know! I’ve been following Margaret for a long time and would like a definitive statement on this as I can see that anything regarding elderly, and I guess that’s what I am, people gaining any benefit from this machine. Kindly clarify for me? Thanks!

February 18, 2022 at 10:22pm

Paula Hamilton

Margaret, Thank you for these wonderful interviews with Dr. Rubin. I have had success (increase BMD) using the Biodensity machine and powerplate weekly for the past two years. I wonder if I can trade in the weekly drive to biodensity for a daily dose of marcodyne LIV, and get the same results. ??? Have you reviewed the Biodensity machine or the osteostrong program? Thank you for all you do. It is difficult to find an osteoporosis expert!

February 20, 2022 at 12:06pm

Rob Martin

I read Dr. Rubin's paper on bone density with astronauts many years ago. I emailed him and he was kind enough to answer me regarding the use of WBV for my mother's osteoporosis. He reminded me that WBV had not been tested on humans and mentioned a different company as being a possible source of a WBV platform. I contacted this company and they were surprised that I even knew of their product which had not been released yet. A couple of months later I had a low platform and one that was bench height. Unfortunately, my mother found it boring to use them and I was never able to ascertain the efficacy of the products regarding her situation. I've recently pulled them down from the attic and have begun using them again, at the .4g setting. These units only go to 1.1g. and this company is still selling them. Time will tell if I notice any changes. Will keep you posted.

February 21, 2022 at 8:56am

Renee

What’s the company’s?

February 26, 2022 at 8:01am

Richard Martin replies

Marodyne. See here: https://my-marodyne-liv.btt-health.com/